Wavelet-based Multifractal Analysis of RR Time Series

نویسندگان

  • Evgeniya Gospodinova
  • Mitko Gospodinov
چکیده

In this paper are presented the current results of scientific research of the RR time series for healthy and unhealthy subjects. TheRR intervals are obtained from 24-hour digital Holter ECG records of subjects. The used in the presented research work wavelet-based multifractal analysis of RR time series is provided by Wavelet Transform Modulus Maxima method. This method is based on wavelet analysis and multifractal formalism. The obtained results show that investigated RR signals for healthy subjects are with multifractal behavior and in pathological cases the signals are with monofractal behaviour. This non invasive method is suitable for diagnostic, forecast and prevention of the pathological statuses. Keywords— Monofractal, Multifractal, Wavelet transform, Partition function, Singularity spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection and Localisation with Wavelet Based Multifractal Formalism

We p resent a method of detecting and localising outliers in stochastic processes. The method checks the internal consistency of the scaling behaviour of the process within the paradigm of the multifractal spectrum. Deviation from the expected spectrum is interpreted as the potential presence of outliers. The detection part of the method is then supplemented by the localisation analysis part, u...

متن کامل

Multifractal analysis of normal RR heart-interbeat signals in power spectra ranges

Power spectral density is an accepted measure of heart rate variability. Two estimators of multifractal properties: Wavelet Transform Modulus Maxima and Multifractal Detrended Fluctuation Analysis are used to investigate multifractal properties for the three strongly physiologically grounded components of power spectra: low frequency (LF), very low frequency (VLF) and ultra low frequency (ULV)....

متن کامل

Influence of progressive central hypovolemia on multifractal dimension of cardiac interbeat intervals

We analyzed the heartbeat time series of 12 human subjects exposed to progressive central hypovolemia with lower body negative pressure. Two data processing techniques based on wavelet transforms were used to determine the change in the non-stationary nature of the time series with changing negative pressure. Our results suggest that autonomic neural mechanisms driving cardiac interbeat interva...

متن کامل

Direct Multifractal Spectrum Calculation from the Wavelet Transform

We present a direct method of calculation of the multifractal spectrum from the wavelet decomposition. Information pertinent to singular structures in time series is captured by the WTMM method and the local effective Hölder exponent is evaluated locally for each singular point of the time series. The direct multifractal spectrum is obtained from the scaling of the histograms of the local effec...

متن کامل

Fractal and Multifractal Time Series

5 Methods for Non-Stationary Fractal Time-Series Analysis 15 5.1 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Discrete Wavelet Transform (WT) Approach . . . . . . . . . . 16 5.3 Detrended Fluctuation Analysis (DFA) . . . . . . . . . . . . . 16 5.4 Detection of Trends and Crossovers with DFA . . . . . . . . . 19 5.5 Sign and Magnitude (Volatility) DFA . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014